

Dual Operational Amplifier

GENERAL DESCRIPTION

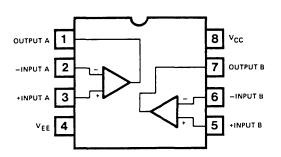
The XR-1458/4558 is a pair of independent internally compensated operational amplifiers on a single silicon chip, each similar to the popular 741, but with a power consumption less than one 741. Good thermal tracking and matched gain-bandwidth products make these Dual Op-amps useful for active filter applications.

FEATURES

Direct Pin-for-Pin Replacement for MC1458, RC4558, N5558 Low Power Consumption — 50 mW typ. and 120mW max. Short-Circuit Protection Internal Frequency Compensation No Latch-Up Wide Common-Mode and Differential Voltage Ranges Matched Gain-Bandwidth

APPLICATIONS

Buffer Amplifiers Summing/Differencing Amplifiers Instrumentation Amplifiers Active Filters Signal Processing Sample and Differencing I to V Converters Integrators Simulated Components Analog Computers


ABSOLUTE MAXIMUM RATINGS

Supply Voltage	
XR-4558CP	± 18V
Input Voltage (Note 1)	± 15V
Common Mode	
Voltage Range	VEE to VCC
Output Short-Circuit Duration (Note 2)	indefinite
Differential Input Voltage	± 30V
Internal Power Dissipation (Note 3)	
Plastic Package:	500 mW
Storage Temperature Range: -65°	C to +150°C
Operating Temperature Range: 0	PC to +70°C
Note 1: For supply voltages less than ± 15V, the	e absolute max-
imum input voltage is equal to the sup	
Note 2: Short circuit may be to ground or eithe	r supply. Rating

applies to + 125°C case temperature of + 75°C ambient temperature for XR1458/4558.

Note 3: Rating applies for case temperatures to 125°C; derate linearly at 6.5mW/°C for ambient temperatures above +75°C for XR1458/4558.

FUNCTIONAL BLOCK DIAGRAM

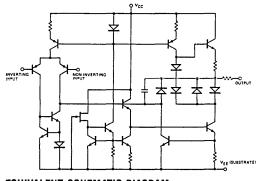
ORDERING INFORMATION

Part Number	Package	Operating Temperature
XR-1458CN XR-1458CP XR-4558CN XR-4558CP	Ceramic Plastic Ceramic Plastic	0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C

SYSTEM DESCRIPTION

The XR-1458 and XR-4558 are dual general purpose op amps featuring better performance than industry standard devices such as the 741; bandwidth, slew rate, and input resistance are greatly improved. Internal protection circuitry includes latch-up elimination, short circuit current limiting, and internal compensation.

The two amplifiers are completely independent, sharing bias circuitry only.


XR-1458/4558

ELECTRICAL CHARACTERISTICS Test Conditions: $T_A = +25^{\circ}C, \pm 15V$, unless otherwise specified.

	XR1458/4558CP				T	
PARAMETERS	MIN	TYP	MAX	UNITS	SYMBOLS	CONDITIONS
Input Offset Voltage		0.5	6.0	mV	V _{io}	R _S ≤ 10 KΩ
Input Offset Current		5	200	nA	lliol	
Input Bias Current		40	500	nA	1 _b	
Input Resistance	0.3	5		MΩ	Rin	
Large Signal Voltage Gain	20	300		V/mV	AVOL	$\begin{array}{r} R_{L} \geq 2 \ K\Omega \\ V_{out} = \pm 10V \end{array}$
Output Voltage Swing	± 12 ± 10	±14 ±13		V V	V _{out} V _{out}	$\begin{array}{l} R_{L} \geq 10 \; K\Omega \\ R_{L} \geq 2 \; K\Omega \end{array}$
Input Voltage Range	±12	±14		V	ViCM	
Common Mode Rejection Ratio	70	90		dB	CMRR	$R_S \le 10 \ K\Omega$
Supply Voltage Rejection Ratio		30	150	μV/V	PSRR	R _S ≤ 10 KΩ
Power Consumption		50	170	mW	Pi	
Transient Response (unity gain) Risetime Overshoot		0.13 5		μS %	t _r t _o	$V_{in} = 20 \text{ mV}$ $R_L = 2 \text{ K}\Omega$ $C_L \le 100 \text{ pF}$
Unity Gain Bandwidth		3.0		MHz	BW	
Slew Rate (unity gain)		1.0		V/µs	dVout/dt	R _L ≥ 2 KΩ
Channel Separation (open loop)		120		dB		f = 10 kHz $R_S = 1 \text{ K}\Omega$
(Gain of 100)		105		dB		f = 10 kHz R _S = 1 KΩ

The following specifications apply for $0^{\circ}C \le T_A \le +70^{\circ}C$ for XR4558CP

Input Offset Voltage			7.5	mV	V _{io}	$R_S \leq 10 \ k\Omega$
Input Offset Current			300	nA	lliol	
Input Bias Current			800	nA	l _b	
Large-Signal Voltage Gain	15			V/mV	Avol	$R_{S} \ge 2 K\Omega$ $V_{out} = \pm 10V$
Output Voltage Swing	±10			mV	Vout	R _L ≥ 2 KΩ
Power Consumption						$V_{\rm S} = \pm 15V$
		90 120	150 200	mW mW	Pi Pi	T _A = High T _A = Low

EQUIVALENT SCHEMATIC DIAGRAM