
Introduction

In alternating current (AC) applications, the direct current (DC) power supply for low-voltage electronic devices (MCU, LEDs, 
opto-couplers, triacs, and so on) can be generated, thanks to several circuits. There are traditionally two major types of power 
supplies used in appliances: capacitive power supply and linear power supply using a step-down transformer. Nevertheless, 
today, designers are implementing more switches- mode power supplies (SMPS) to reach higher output current level and 
especially lower standby power consumption. The power supply choice is a trade-off between several parameters, that is, the 
cost, the required power, the output voltage level and polarity, the standby power consumption, and the necessity or not of an 
electrical insulation between the mains and the low output DC voltage.

This application note considers only noninsulated power supplies. After a brief description of the triggering quadrants and key 
parameters for SCR, triac, ACS and ACST, the usual control circuits are described according to the output voltage polarity of the 
power supply. Finally, some examples of negative polarity power supply circuits are introduced.
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1 Triggering quadrants and key parameters

To switch-on a SCR, a triac, an ACS, or an ACST, a gate current must be applied on its gate pin (G). The gate 
current flows between gate (G) and cathode (K) for SCR, or between gate and terminal A1 for triac, or between 
gate and terminal COM for ACST and ACS.
For triac and ACST, the gate current could be positive and negative. The Figure 1 illustrates the simplified 
schematic of a triac or an ACST and its associated silicon structure. As shown on these figures, a triac or an 
ACST could be switched-on by a positive or a negative gate current, due to the embedded two diodes connected 
in a back-to-back configuration between G and A1. These two diodes are implemented by the P1-N1 and P1-N2 
junctions.

Figure 1. Simplified equivalent schematic of triac/ACST circuit

The silicon structure of an ACS is different from a triac or an ACST (see Figure 2). Here, the gate is the emitter of 
an NPN bipolar transistor. So, there is only one PN junction (implemented by P1 and N1. The gate current can 
then only be sunk from the gate, and not sourced to it.

Figure 2. Simplified equivalent schematic (a) and silicon structure (b) of an ACS

Four triggering quadrants can be defined according to the polarity of the gate current and the polarity of the 
voltage applied across the device, as shown on Figure 3.
For SCR, only a positive gate current can switch on the device. Thus, the triggering quadrants are not considered 
for a SCR device.
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Figure 3. Triggering quadrants according to gate current and voltage polarities

The usable triggering quadrants depend on the family and the class of the device used. The Table 1 sums-up the 
triggering quadrants for STMicroelectronics devices.

Table 1. Examples of negative power supplies

Family Class
Triggering quadrants

Q1 Q2 Q3 Q4

Triac

Standard Yes Yes Yes Yes

SNUBBERLESS 
and logic level Yes Yes Yes No

SNUBBERLESS 
high temperature Yes Yes Yes No

ACS/ACST
ACS No Yes Yes No

ACST Yes Yes Yes No

As the triggering quadrants Q2 and Q3 are common to all triacs and ACS/ACST devices, the control mode in Q2 
and Q3 is recommended. Indeed, the replacement of one device by another one (for example, if an ACST is used 
in place of a standard triac) is possible. Moreover, the triggering in Q4 is not advised because the triggering gate 
current is the highest. Also the dI/dt capability of triacs is lower in Q4 compared to the other quadrants. Working in 
Q2/Q3 quadrants is then advised, even for standard triacs, to decrease the board consumption and increase the 
board reliability.
To design the control circuit and the power supply, the device triggering parameters must be considered, that is, 
the triggering gate current IGT, the triggering gate voltage VGT and the latching current IL.

• IGT is the minimum gate current to turn on the device. This current has to be applied between gate and 
cathode for a SCR gate, and A1 for a triac or gate and COM for an ACS/ACST. The applied gate current 
must be higher than the IGT specified at the lowest expected operating temperature. As a high gate current 
value provides an efficient triggering, a gate current of two times the specified IGT is recommended.

• VGT is the voltage measured between gate and cathode for a SCR gate, and A1 for a triac or gate and 
COM for an ACS/ACST when the IGT current is applied.

• IL is the latching current. The latching current is the minimum value that the load current must reach before 
gate current removal to avoid device switch-off (see AN303).

These parameters are specified at 25°C and vary with the junction temperature as shown in Figure 4. The IGT, 
VGT, and IL variations are the same for the most part of the devices, expect for sensitive and low current SCRs 
(P0102BL device, P01, X06, X02, X04, and TS420 series) and expect for ACS/ACST devices.
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Figure 4. Typical variations of the triggering gate current, the triggering gate voltage, and the latching 
current versus the junction temperature
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2 Triggering circuits

2.1 Two kinds of power supply bias
To trigger a triac, an ACST, an ACS, or a SCR, a gate current has to be applied on the gate pin and circulates 
between gate and cathode (K) for SCR, or between gate and terminal A1 for triac, or between gate and terminal 
COM for ACST and ACS.
For noninsulated control circuits, this means that the reference of the control circuit has to be related to K, A1, or 
COM. Then there are two ways to connect this drive reference:
• Solution 1: connect the control circuit ground (VSS) to K or A1
• Solution 2: connect the control circuit voltage supply (VDD) to A1 or COM

Solution 1 is called a positive power supply. The voltage supply VDD is indeed above the drive reference (VSS) 
which is connected to the mains terminal (line or neutral) as shown in Figure 5. If the supply is a 5 V power 
supply, then the VDD is 5 V above the mains reference.

Figure 5. SCR/Triac control with positive power supply

Solution 2 is called a negative power supply. The voltage supply reference (VSS) is indeed below A1 or COM, 
which is connected to the mains reference (line or neutral) as shown in Figure 6. If the supply is a 5 V power 
supply, then the VSS is 5 V below the line reference.
This topology can be used with all triacs, ACS and ACST, not with SCR.

Figure 6. Triac and ACS/ACST control with negative power supply

2.2 Gate resistor value definition
The minimum gate current (IGT) required to trigger a triac, a SCR, or an ACS/ACST increase as the junction 
temperature (Tj) decreases (see Figure 4). Therefore, the worst case occurs when Tj equals the minimum 
ambient temperature. For most appliance systems, the minimum ambient temperature is 0 °C.
For example, the ACS108-8Sx IGT level is given as lower than 10 mA with Tj equals 25 °C. When Tj equals 0 °C, 
IGT becomes 15 mA.
In the following, we assume that the device gate is directly connected to a microcontroller (MUC) output pin, 
through a gate resistor (RG).
To ensure that the MCU delivers "IGT(0 °C)," the maximum gate current at 0 °C, the gate resistor (RG) must be 
calculated for the minimum available voltage. This means that the minimum supply voltage and the maximum 
voltage drop of the gate junction (VGT) should be taken into account.
Furthermore, the resistance definition depends on its tolerance. Typically, 1% precision resistors are used.
The microcontroller output port resistor (RDSon) maximum value also plays a role in the current limitation.
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To sum-up, the following formula gives the RG:VDDmin− VGTMAXRDSonmax + RG ⋅ 1.01 > IGT 0°C (1)

Example: for a 20 mA output pin of a microcontroller, the worst RDSon could equal typically 50 Ω (ex: 1.5 V for 
30 mA for an 85 °C junction temperature).
If an ACST6 is used, its IGT increases by 35% for a 0 °C junction temperature, compared to the 10 mA given at 
25 °C. VGT is given for Tj equals to 25 °C. Its value increases as Tj decreases with a 2 mV/°C rate. The following 
formula gives the RG for ACST6 devices with a minimum supply voltage of 4.5 V and VGT equals to 1.55 V (at 
0 °C): RG < 4.5− 1.550.0135 ⋅ 1.01 − 50 = 166Ω (2)

The normalized value closest to 166 Ω is 165 Ω (1% precision resistor).

2.3 SCR and triac triggering circuit with positive power supply
With positive power supplies, the gate current can only be sourced from the control circuit to the gate. Such a 
topology is so adapted for SCR's control. For triacs, the devices are then triggered in quadrants Q1 and Q4. As 
already explained in Section 1: Triggering quadrants and key parameters, such an operation is not advised for 
triacs as the gate current level is the highest for Q4. Also triac resistance to dI/dt at turn-on is lower for Q4.
Moreover, as a control circuit, designed with a positive power supply, can only be used with standard triacs, the 
whole design has to be changed if the designer wants to switch from this standard triac to a SNUBBERLESS or 
logic level triac, or to an ACS or ACST. Indeed, these latter devices cannot be triggered in Q4 (refer to 
Section 1: Triggering quadrants and key parameters).
Furthermore, when the required gate current to trigger the device is higher than the control-circuit output current 
capability, the control-circuit output current has to be amplified. For example, today a lot of MCUs feature output 
pins with a current capability of around 30 mA. They can switch triacs safely with IGT up to 15 to 20 mA. If a triac 
with a 35 or 50 mA IGT has to be controlled by such an MCU, the two solutions are then:

• Use several MCU output pins in parallel (the best is to use a separate gate resistor between each output 
pin and the triac gate to ensure a good current repartition between each pin)

• Use a bipolar transistor as shown in Figure 7

Figure 7. Gate current amplification with positive supply topology

With the bipolar solution, to keep the current sourced to the gate, the only way is then to use a PNP transistor. In 
effect, a PNP transistor has to be used to set its drive reference to a stable bias, which is the power supply (VDD) 
in this case.
This is another drawback of the positive power supply topology. To amplify the control circuit output current, a 
PNP transistor has to be used instead of an NPN transistor. And a PNP transistor has a lower current gain and a 
higher price than an NPN one.

2.4 Triac and ACS/ACST triggering circuit with negative power supply
Such a topology is the preferred one. The gate current is then sunk from the gate by the control circuit. The 
device then works in Q2 and Q3 quadrants. Such a topology is adapted for all devices: standard, SNUBBERLESS 
or logic level triacs, and ACS or ACST.
For SCRs, the gate circuit has to be modified to source the current to the gate, as explained in Section 2.5: SCR 
triggering circuit with negative power supply.
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It should be noted that another advantage with this topology is that the control circuit output current can be easily 
amplified, if needed (see Section 2.3: SCR and triac triggering circuit with positive power supply), with an NPN 
transistor as shown in Figure 8.

Figure 8. Gate current amplification with negative supply topology

2.5 SCR triggering circuit with negative power supply
In the previous section, it has been demonstrated that choosing a negative power supply is the best solution to 
control triac or ACS/ACST. But in some applications, an electronic circuit can have to control both triac and SCR. 
And SCR can only be triggered by sourcing a current to their gate.
Such applications are encountered when a switch has to control a DC load on the mains. This occurs, for 
example, for some pumps used in coffee machines, which feature an internal diode (see Figure 9). Also some 
magnetic door-locks can be controlled only during one half cycle. Then a SCR can be a cheaper solution than a 
triac.
The schematic has then to be modified to allow SCR to be triggered thanks to a negative power supply. This 
schematic needs to add a PNP transistor (Q1), a low-voltage diode (D1), a resistor (R2), and a capacitor (C1) 
(refer to Figure 9). This schematic is very similar to the schematic used to trigger triacs with a positive power 
supply (see AN440).
The circuit operation is the following one:
• First: Q1 is OFF, C1 capacitor is charged due to D1 and R3.
• Second: Q1 is switched "ON" by the “CTRL” signal, C1 capacitor is so discharged through R2, the SCR 

gate, and Q1. A positive gate current pulse is then applied and the SCR switches "ON".
C2 capacitor is used to increase the dV/dt immunity of X1 SCR, which is a very sensitive device (IGT < 200 µA for 
X00602 devices).
The gate pulse width has to be set with "R2" and "C1" values. The point is to keep the gate current above max. 
IGT up to the moment the anode current (IT) is above the max. latching current. For example, for the X00602, IL 
can reach up to 7 mA for a -20°C junction temperature.
With the load used in this application, a gate current pulse width longer than 200 µs (tp) is required to reach 7 mA 
on IT. With component values given on Figure 9, X1 gate current remains above 2.4 mA during the whole “CTRL” 
pulse, which lasts 400 µs (seeFigure 10). This allows correct operation even for very low ambient temperature 
operation.

Note: As the gate current is very low, it can be measured thanks to VD voltage (see Figure 10), which makes its easier 
measurement. Indeed: IG ≈ (VD - 0.6 V)/R2
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Figure 9. Drive schematic to trigger an SCR with a negative power supply

Figure 10. Experimental validation of SCR triggering

2.6 DIAC control circuit
Another schematic that can be used for non-insulated control circuits is the diac-based circuit. Such a circuit is 
very simple and known since the 70’s. It was traditionally used for light dimmers or universal motor speed-control 
circuits. Figure 11 gives the typical schematic for a light dimmer. LF and CF are respectively the filter inductor and 
capacitor used to reduce the conducted electromagnetic noise coming from a triac switch-on at voltage levels 
different from zero. The circuit is similar for a universal motor speed control circuit. The filter is then placed before 
the mains input as the noise is here more coming from motor brushes commutations.
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Figure 11. Diac-based light dimmer

The dimmer circuit works as shown on Figure 11:
• The capacitor is charged through the resistive potentiometer (P)
• When VC reaches the diac breakover voltage (VBO), the diac suddenly turns on and its voltage is 

decreased by ΔV. The C capacitor is also discharged (ΔV reduction), this results in a discharge current, 
which is applied to the triac gate. RS is used to enlarge the gate current pulse width. T is then switched 
"ON". Here, for the positive line polarity, T is triggered in Q1.

• T remains "ON" until the next zero current crossing point. As T is "ON", there is no more high voltage 
applied between A1 and A2, and the diac is not charged anymore

• Triac T switches "OFF" when its current reaches zero. Then the mains voltage is applied back between A1 
and A2. So, capacitor C is then recharged in negative bias. This goes "ON" until to reach the negative diac 
VBO

• Triac T is switched "ON" as explained on point 2, but here in Q3 (current sunk from the gate and 
negative VA2-A1 voltage).

As explained above, AC switches used in such circuits are triggered in the Q1 and Q3 quadrants. This means that 
ACS cannot be triggered by such circuits as they need that their gate current is always sunk from the gate (that is, 
only Q2 and Q3 triggerings are possible).
The main point to check that with diac-based circuits is that the gate current pulse width lasts enough time to 
allow the triac anode current to reach the latching level (IL, refer to AN303 for further information on this 
parameter). Figure 12 explains this point. The gate current has to be higher than the max. specified IGT up to 
have a load current, i.e an anode current, higher than the maximum latching current (according to the datasheet 
max. value, but also for the lowest junction temperature as IL increases with temperature decrease). This ensures 
a right triac turn-on.

Figure 12. Required gate pulse width, with diac circuit, to trigger the triac
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When the pulse width (tp) is defined, Figure 13 (given in the diac datasheet) can then be used to define the RS 
and C values. For example, with this curve, coming from the DB3TG datasheet, if a 15 µs pulse width is required, 
a 33 Ω RS resistor is required with a 150 nF, C capacitor.
It should be noted also that resistor RS is helpful to keep diac current below its maximum repetitive current 
allowed (ITRM parameter).

Figure 13. Typical pulse width duration versus RS and C values
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3 Examples of negative power supplies

3.1 Linear power supply
The linear power supply is composed of a step down transformer, a diode bridge, a linear regulator (U1), and 
some filtering capacitors (see Figure 14).

Figure 14. Linear power supply

The output current (IDC) depends on the apparent power of the transformer (S), the output voltage (VDC), and the 
power factor (fp) of such a power supply. Due to the high mains current harmonics content, a 0.5 power factor can 
usually be assumed. Without consideration of the transformer, diodes and regulator power losses, the output 
current is then given by: IDC = S × pfVDC (3)

For a typical power factor of 0.5 and a 230 V / 15 V step down transformer, the calculated output current capability 
and the measured typical standby power consumption (POFF) are given according to the transformer apparent 
power on Table 2.

Table 2. Calculated output DC current and measured typical standby power consumption

Transformer power, S Output DC current, IDC
Standby power consumption, POFF 

(measured)

1.6 VA 53 mA 0.08 W

3 VA 100 mA 0.5 W

10 VA 333 mA 1.1 W

The benefits of this solution are:
• High output current
• Possibility to easily generate multiple output voltages by using several secondary windings
The drawbacks of this solution are:
• High cost
• High standby losses (due to the transformer magnetizing current)
• Bulky size of the 50 Hz transformer
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3.2 Capacitive power supply
Figure 15 gives the diagram of a negative capacitive power supply.

Figure 15. Capacitive power supply

To have a constant voltage across C1, the average value of the input current (IIN(av)) must be equal to the 
average value of the output current (IOUT(av)). The input current is a half-wave rectified current, whose average 
value (IIN(av)) is given by the following equation (R1 and C1 impedances and diode D2 voltage drop are 
neglected): IIN AV = 2 × f × C2 × Vmains peak = IOUT AV (4)

The standby power consumption (POFF) is set by the R1 resistor value, the average input current, and the D1 
zener voltage (VZ). This resistor R1 is required to limit the inrush current stress at the power supply turn-on and to 
avoid the overrating of the current protections of the circuit. The standby power consumption is:POFF = R1 × IIN AV × π2 2+ VZ × IIN AV (5)

For a 230 V / 50 Hz mains voltage, a 60 Ω resistor R1 (typical value) and a 15 V zener diode, the calculated 
average output current, and standby power consumption versus different AC capacitors are given in Table 3:

Table 3. Calculated average output DC current and standby power consumption

AC capacitor, C2 Average output DC current, IOUT(av) Standby power consumption, POFF

220 nF 7.1 mA 0.12 W

470 nF 15.3 mA 0.3 W

680 nF 22.1 mA 0.48 W

1 µF 32.5 mA 0.8 W

The benefits of this solution are:
• Low cost (for output current lower than 20 mA)
• Small size
• Easy to implement
The drawbacks of this solution are:
• Low average output current. The maximum average output current is about 30 mA. For higher output 

current, the size and the cost of the C2 capacitor becomes prohibitive. Moreover, the inrush current stress 
at the power supply turn-on increases and will need higher resistor R1 power.

• High standby power consumption. For example, the standby power consumption equals about 0.8 W for a 
230 V power supply with a capacitor C2 of 1 µF, a 15 V zener diode and a 60 Ω R1.
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3.3 Resistive power supply
Figure 16 gives the diagram of a negative resistive power supply.

Figure 16. Resistive power supply

As for the capacitive power supply, to have a constant voltage across C1, the average value of the input current 
(IIN(av)) must be equal to the average value of the output current (IOUT(av)). The input current is a half-wave 
rectified current, whose average value is given by the following equation (C1 impedance and diode D1 voltage 
drop neglected): IIN AV = Vmains peak − VZR1 × π = IOUT AV (6)

The standby power consumption (POFF) is set by the R1 resistor value and is equal to:

POFF = Vmains peak − VZ 24 × R1 (7)

For a 230 V mains voltage and a 15 V zener voltage, the calculated average output current and standby power 
consumption versus different resistors are:

Table 4. Calculated average output DC current and standby power consumption

Resistor R1 Average output DC current, IOUT(av) Standby power consumption, POFF

25 kΩ 3.9 mA 1 W

18 kΩ 5.5 mA 1.3 W

12 kΩ 8.2 mA 2 W

8 kΩ 12.3 mA 3 W

The benefits of this solution are:
• Low cost (for output currents < 10 mA)
• Small size
• Easy to implement
The drawbacks of this solution are:
• High resistor power dissipation. The resistor value is typically limited to 8 kΩ to limit its power dissipation to 

3 W.
• Low average output current. The maximum average output current for such supplies is about 12 mA. For 

higher output current, the cost and the power dissipated by R1 becomes prohibitive.
• Standby power consumption. For an 8 kΩ resistor, a 15 V zener diode and 230 V mains voltage, the 

standby power consumption is about 3 W.
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3.4 Buck-boost power supply
The first example of switched-mode power supplies (SMPS) that can be used to convert AC mains voltage to DC 
voltage is the buck-boost converter. The buck-boost converter is the simplest converter to implement a negative 
power supply. It should be noted that only a positive power supply can be implemented with a buck converter.
Figure 17 gives the diagram of a negative buck-boost power supply using a VIPER16 device.

Figure 17. Buck-boost power supply with VIPER16 device

When the VIPer MOSFET is on, the energy is stored in the inductance L2. When the VIPer MOSFET is switched 
off, the energy stored during on time is supplied to the output capacitor C6.
The input voltage is a half-wave rectified and filtered signal as a result of diode D3 and filter PI (C4, C5, and L1). 
The input voltage is close to the peak mains voltage, so close to 325 V for a 230 V mains. As the input voltage is 
much higher than the output voltage (typically 3.3 V, 5 V or 15 V), the switching duty cycle is very low (a few %). 
Thanks to the VIPer integrated regulator, a low duty cycle does not significantly affect operation. The buck-boost 
converter typically operates in discontinuous mode. Discontinuous mode is privileged to reduce the size and the 
cost of the inductance with respect to continuous mode.
The following equation gives a simplified relation between the average output DC current and the inductance 
value for discontinuous mode (VIPer power losses not considered).IOUT = α2 × Vmains peak22 × L2 × f × VOUT (8)

The minimum inductance value is limited by the VIPer peak current limitation (IDlim). For the VIPER16 device, the 
typical peak current limitation is 400 mA. The minimum inductance in discontinuous mode is given by:L2 min = Vmains peak × αIDlim × f (9)

The ratio between output and input voltages is used to define the VIPer duty cycle.VSVe = α1− α so α = VSVS+ Ve (10)

For a 230 V mains voltage, a 12 V output voltage and a 60 kHz switching frequency (VIPER16 typical frequency), 
the average output current versus different inductances and the typical standby power consumption are:
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Table 5. Calculated average output DC current (α ≈ 0.035) and typical standby losses

L2 inductance Average output DC current, IOUT(av) Standby power consumption, POFF

900 µH 100 mA

≈ 100 mW
800 µH 115 mA

700 µH 130 mA

600 µH (min value) 155 mA

The advantage of a buck-boost converter compared to a buck converter is that there is no need of an added 
output load resistance or output zener. Indeed, for both topologies, the feedback capacitor is still discharged with 
the IC feedback pin current, whereas the output capacitor is not discharged if the output current is zero. The 
feedback capacitor then indicates a lower output level than reality. Furthermore, this drawback is amplified by the 
buck topology as the output capacitor is charged during each MOSFET on time, whereas the feedback capacitor 
is not. So, the output voltage can increase to a too high value and has to be clamped.
The added resistance or clamping diode is then required at the buck output to avoid a too high output voltage in 
case of no-load or very light load.
With a buck-boost converter, the output capacitor is not charged during MOSFET on time. Furthermore, the 
output voltage capacitor (C6) cannot be charged if the feedback capacitor (C2) voltage is lower than C6, as diode 
D2 is blocked. So, there is no risk of a too high output voltage and the clamping device is not required.
Theoretically, the efficiency (as well as the maximum output current) and the output capacitor of a buck-boost 
converter should be respectively slightly lower or bigger than for a buck converter, as the whole inductor current is 
used to charge the output capacitor for the buck converter. But for 230 V AC / 12 V DC, the duty cycle is very low 
so there is no great difference between buck and buck-boost performances. Similar efficiency is reached for both 
topologies, with the same reactive components.
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3.5 Flyback power supply
The second SMPS topology widely used today by designers is the flyback topology. This converter uses a 
transformer to store the energy instead of an inductance. The benefit of this solution, compared to a buck-boost 
converter, is the possibility to insulate the output voltage and also to generate several output voltages by using 
several secondary windings. A flyback converter can also deliver a higher power with the same monolithic device 
(VIPer) compared to a buck or buck-boost converter.
For AC switch control, as the VDD level has to be connected to the mains, there is no interest in implementing an 
insulated power supply. So, only the advantage of implementing a second low-voltage supply pushes designers to 
use such a topology. Note that this second supply can then be insulated from the mains.
It is easy to implement a negative supply with a flyback converter, and the output voltage is insulated from the 
mains. So, the VDD terminal can either be connected to the neutral or the line. With certainty, the VDD voltage is 
then no longer insulated from the mains. This means that the insulation has to be implemented elsewhere to 
protect the appliance user from electrical shocks (for example, with an insulated keyboard and display).
Note also that due to the transformer ratio, a flyback converter can work with a higher duty cycle than a buck-
boost converter. The input peak current is then lower with a flyback converter than with a buck-boost converter. 
The MOSFET peak current is thus lower and so are its switching losses. The flyback converter efficiency can then 
be slightly better.
As for the buck-boost converter, the VIPer operates in discontinuous mode.
The drawback of the flyback solution is that the transformer used most of the time is a specific device, whereas a 
standard inductance can be used with a buck-boost converter. Consequently, the flyback converter cost could be 
higher by about 15% than the buck-boost converter cost for the same output power.
Figure 18 gives the diagram of a flyback power supply using a VIPER16 device. For a 230 V mains voltage and a 
5 V output voltage, the standby power consumption is typically around 70 mW with this schematic.

Figure 18. Flyback power supply with VIPER16 device

For flyback converter design, you can refer to the technical note from STMicroelectronics: TN0023 (see TN0023).
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3.6 Negative power supplies comparison
Table 6 summarizes the advantages and drawbacks of the negative power supplies introduced in the point 3 
according to the cost, the size, the easiness of implementation, the standby power consumption, the output 
current capability, and the capability to generate easily one or more output voltages.

Table 6. Negative power supplies comparison

Power supply 
type Cost Size

Easy 
implementatio

n

Standby power 
consumption

Output

Max. current 
level Number

Linear - -- ++ -- + 1 or more

Capacitive + - ++ - -- 1

Resistive - + ++ -- –- 1

Buck-boost ++ ++ + +++ +++ 1

Flyback + + + +++ ++++ 1 or more

Note: Key: + : good and - : bad.
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4 Conclusion

This application note has presented all control circuits, which can be used to control SCR, triacs or ACS/ACST 
devices, as far as a noninsulated circuit is allowed.
It has been shown that a negative power supply is the best topology as it can be used for most all AC switches. 
Moreover, if an SCR has to be controlled with a board using a negative supply to trigger AC switches, a simple 
schematic has been presented to also control the SCR with the same supply.
Schematics for negative switched mode power supplies have also been presented.
Even if the first reflex of a designer is to implement a positive power supply, negative power supplies are as easy 
as implementing positive ones. There are also some benefits with a negative supply topology such as, for 
example, the removal of output overvoltage protection for noninsulated SMPS (buck-boost topology compared to 
buck topology), opto-transistor removal (for flyback converters) and the use of NPN transistors instead of PNP 
ones to amplify the gate current.
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